

Motivations

1- How do transformer-based trackers respond to adversarial attacks?

2- How does the performance of different adversarial attacks vary on

tracking datasets as attack parameters are modified?

3- How does the performance of transformer-based trackers compare

to other backbone architectures under identical adversarial attack conditions?

	ROMTrack	MixFormerM	TransT	DiMP	\Pr{DiMP}	$\operatorname{SiamRPN}$	DaSiamRPN
SPARK(white-box)	N/A	N/A	А	N/A	N/A	А	А
RTAA (white-box)	N/A	N/A	А	N/A	N/A	А	А
IoU (black-box)	А	А	А	А	А	А	А
CSA (black-box)	А	А	А	N/A	N/A	А	А

A. Adversarial Attacks per Tracker Output

Goal: Evaluate the difference before and after the attack when one of the tracker's outputs (bounding box or binary mask) is measured.

		EAO			Accuracy			Robustness		
Stack	Method	Clean	Attack	Drop	Clean	Attack	Drop	Clean	Attack	Drop
STB	CSA IoU RTAA SPARK	$\begin{array}{c} 0.299 \\ 0.299 \\ 0.299 \\ 0.299 \\ 0.299 \end{array}$	$\begin{array}{c} 0.285 \\ 0.231 \\ 0.058 \\ 0.012 \end{array}$	4.68% 22.74% 83.28% 95.99%	$\begin{array}{c} 0.472 \\ 0.472 \\ 0.472 \\ 0.472 \\ 0.472 \end{array}$	$\begin{array}{c} 0.477 \\ 0.495 \\ 0.431 \\ 0.244 \end{array}$	-1.06% -4.87% 8.69% 48.30%	$0.772 \\ 0.772 \\ 0.772 \\ 0.772 \\ 0.772$	$\begin{array}{c} 0.744 \\ 0.569 \\ 0.157 \\ 0.051 \end{array}$	3.63% 26.29% 79.66% 93.39%
STS	CSA IoU RTAA SPARK	$\begin{array}{c} 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \end{array}$	$\begin{array}{c} 0.458 \\ 0.334 \\ 0.067 \\ 0.011 \end{array}$	8.40% 33.20% 86.60% 97.80%	$0.749 \\ 0.749 \\ 0.749 \\ 0.749 \\ 0.749$	$\begin{array}{c} 0.736 \\ 0.710 \\ 0.533 \\ 0.266 \end{array}$	$\begin{array}{c} 1.73\% \\ 5.21\% \\ 28.84\% \\ 64.48\% \end{array}$	$0.815 \\ 0.815 \\ 0.815 \\ 0.815 \\ 0.815$	$\begin{array}{c} 0.779 \\ 0.588 \\ 0.146 \\ 0.042 \end{array}$	$\begin{array}{r} 4.42\% \\ 27.85\% \\ 82.08\% \\ 94.84\% \end{array}$

TransT-SEG Performance after Attacks

MixFormerM Performance after Attacks

		EAO			Accuracy			Robustness		
Stack	Method	Clean	Attack	Drop	Clean	Attack	Drop	Clean	Attack	Drop
STB	CSA IoU	$\begin{array}{c} 0.303 \\ 0.303 \end{array}$	$0.308 \\ 0.246$	-1.65% 18.81\%	$0.479 \\ 0.479$	$\begin{array}{c} 0.478 \\ 0.458 \end{array}$	$\begin{array}{c} 0.21\% \\ 4.38\% \end{array}$	$0.780 \\ 0.780$	$0.791 \\ 0.665$	-1.41 14.74
STS	CSA IoU	$0.589 \\ 0.589$	$0.562 \\ 0.359$	$4.58\%\ 39.05\%$	$0.798 \\ 0.798$	$0.803 \\ 0.660$	-0.63% 17.30%	$0.880 \\ 0.880$	$0.857 \\ 0.677$	2.61% 23.07

Main Takeaway: The attacks applicable to transformer trackers have more impact on the accuracy of the object mask than the bounding boxes on VOT2022ST dataset.

Reproducibility Study on Adversarial Attacks Against Robust Transformer Trackers

Fatemeh Nourilenjan Nokabadi^{1,2,3}, Jean-François Lalonde^{1,2}, Christian Gagné^{1,2,3,4} ¹IID, ²Université Laval, ³Mila, ⁴Canada CIFAR AI Chair

B. Adversarial Attacks per Perturbation Level

SPARK Performance against TransT Tracker

Main Takeaways:

1- Increasing the perturbation level on SPARK attack setting results in more super-perturbed regions, i.e. regions with perceptible noise.

2- Adding the previous perturbations (up to 30 frames) result in more stable performance for SPARK against changes in perturbation levels.

3- For RTAA attack, adding a higher perturbation level generates more perceptible noise for all frames, which damage more the overall tracking performance.

Goal: Evaluate the effect of the perturbation level shifts on white-box attacks (SPARK and RTAA) against

____ [0.681] TransT

[0.030] ε₂

[0.012] ε₃

- [0.010] ε₄

– [0.010] ε₅

-- [0.105] ε₁

 $0.0 \quad 0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9 \quad 1.0$

Overlap threshold

ϵ	No. of frames	SSIM	L1 norm
2.55	7	36.86	176.04
5.1	7	40.96	181.86
10.2	13	41.08	181.33
20.4	13	41.97	182.53
40.8	14	42.53	183.98

C. Adversarial Attack per Upper-Bound

Goal: Evaluate the effect of the upper bound change on black-box attack (IoU) against transformer trackers.

Main Takeaway: The outcome of the IoU attack is sensitive to its initialization. The evaluation process may take a long time due to unsuitable initialization point.

D. Transformer versus Non-transformer Trackers

Goal: Study the adversarial robustness of trackers with different backbones.

Main Takeaways:

1- Despite transformer trackers (ROMTrack, TransT, and MixFormer) showcasing the top-3 performance, their evaluation scores more notably decreased after applying the IoU method.

2- Discriminative trackers also demonstrate a great adversarial robustness and ranked immediately after the transformer trackers on GOT10k dataset.

