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Introduction:; Motivation of using RL in object tracking

* Current trackers work based on the correlation of search and template regions

* |[n the case that objectis absent (occlusion) or deformed (appearance
change), the target is lost!

* Temporal information usage in tracker development is trivial!
 Computation complexity of computing correlation for every step is high!

Suggestion: Using RL to learn the motion policy based on the target
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Introduction: Tracking as an episodic task

* Tracking dynamic as an episodic task:

* Initial point: Initialize in the anchor frames with binary mask of the target
* Repetitive task: Predict the object bbox starting from the second frame

* Data charge: If we reach the end of video sequence, the state, prev bbox, and everything
Is charged with new video sequence.

* Ending point: The tracking episode is ended whenever some principles are violated!

Episode violation rule

Whenever the predicted bbox is out of the current frame, the tracking episode must end!



Single Object Tracking Agent with Comprehensive Action Set

* What?
Predict rbbox of target using RL agents
* Why?
- Current trackers are basically using object recognition with slightly using temporal information

- It learns motion policy conditioned on the frame and target. It may help trackers in case
of occlusion and object deformation happens in videos

* How?
Using Soft-Actor Critic algorithm with defining object tracking as an episodic task
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Figure 3: Let us consider two successive frames rbboxs. One can see that the rbbox at time step
t+ 1 is the transformed rbboz at time step t, (a) (top) frame patch at time step ¢, and (bottom)
frame patch at time step ¢t + 1, (b) (top) binary mask with rbboxr at time step t, (bottom)
binary mask with rbbozx at time step ¢ + 1. On right, two rbboxs are shown in the frame as the
foregrounds.



Single Object Tracking Agent with Comprehensive Action Set

4.1 Single moving object model in video sequence

In our method, the mask is used to compute the rotated bounding box (rbboz) in each time
step. Then, we employ the (rbboz)s to describe the moving object characteristics in the frame
as rbbox = ([, y], [w, h], @) representing the center position, size and angle of the rbboz.

The underlying assumption of our method is that any motion of rbboxrs between two successive
frames is decipherable by three geometric transformations: translation, counterclockwise rota-
tion, and scale. Figure 3 illustrates this idea for two consecutive frames. The object’s position
in the next frame [z, y'] can be calculated by transforming the current position [z, y| as:

!

T xr
y| =G x|y (4)
1 1

where G} is:

As, x cos)  —As, x sinf  Ax
Gt = |Asy x sinfl  As, x cosf Ay (5)
0 0 1



Single Object Tracking Agent with Comprehensive Action Set

1 Uniqueness of (-; in our motion model

It is essential to verify if it is feasible to calculate G for every two successive frames and whether

it is a unique transformation in each time step ¢ or not.
Let us assume the current and next rbbox as:

rbbox; = ([z,y), [ss. 5], @) (8)

rbbozest = ([a',y], [, 51, o) (9)

Following equations are used to calculate the scale in = axis, scale in y axis, rotation, trans-
lation in z axis, and the translation in y axis.

s
As, = =% (10)
Sy
‘;f
As, = 2 (11)
' Sy
0=a —a (12)
ty =2 —x x As, x cosl +y x As, x sinf (13)

ty =9y —yx As, x sinfl —y x As, x cost (14)
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Therefore, there is one unique Gy for every two desirable rbboxrs. To normalize the translation
parameters, we divided the translations parameters by the image dimensions as follows

ta £y
Ar = — Ay ==+ (15)
wy ' hy
where w; and hj refer to the image’s width and height. Also, we considered the sinfl for the
rotation parameter to scale the numbers.
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* |nitial results using SAC algorithm with our proposed environment:

CAST rbbox, CAST rbbox, CAST rbbox, CAST rbbox,
Classification + RL, Segmentation + RL, Classification + RL, Segmentation + RL,
Batch 29, Sequence 1 Batch 29, Sequence 1 Batch 29, Sequence 3  Batch 29, Sequence 3

Rewards 1 U 1 Rewards_1 oU_1 Rewands_3 oU_3 Rewards_3 o3
[2) 0.339252572028281 (2] 0372594607622143 (2] 0.414743297663495 [2] 0.422184892924633
(2] 0.130630573728821 [2] 01461058656 18557 [2] 0.150601740845572 2] 0.215663340407351
(1] 0.037027966826181 [.] 0.044882302941735 2] 0.06282799424146 [2] 0.097398822256352
o) 0.010438009126 169 [e.] 0.006440263460028 0Nl 0.025500615456111 [.] 0.039259451447375
[-2] 0.000230698891925 [-2] 142710322975926E~05 [o.] 0.011139163086075 [o.] 0.018422409253544
[-4) 0 [-4) 0 -1] 0.005108955086161 [-1.] 0.007957465076915
[-6] 0 [-6] 0 (-3 0.00213%453962015 [-3] 0.003197789072667
[-8] 0 [-8] 0 [-5.] 0.000857870847461 [-5] 0.001327623813878
[-10.] 0 [-10.] 0 -7.) 0.000383733236489 [-7.] 0.000542181734419
[-12.] 0 [-12) 0 -9 0.000154295077522 [-9.] 0.000239500620724
[-14]) 0 (-] 0 [-n.) 6345115306 16465E-05 [-1.) 9.55458921787891E-05
[-16.] 0 [-16.] 0 [-13] 3,70000062687247E~05 [-13] 4.28533600734462E-05
[-18.] 0 [-18.) 0 [-15) 1.3500365313503E-05 [-15.) 1.78305751118759E-05
[-20.] 0 [-20.) 0 [-17.] S.497595S9ATTEE-06 [-17.] 8.08778891304118E-06
[-22] 0 [-2] 0 -1 2.20814084436608E-06 [-19.) 324642970038609E -06
[-24.) 0 [-24.] 0 [-21] 0 -] 1.31841694146932E-06
[-26.] 0 [-26.) 0 [-1.] 4.03201402876344E 07 [-23.) 5.24842941290364E~07
[-24) 1.54375434526364E-07 [-24) 283212786213458E-07 [-2.] 172041 9E-07 [-25] 2.13280825808869E -07
[-26.) 6.21071836810205E-08 [-26.] 26077152611 097E~07 [-2) 7.6156368414 MAIE-08 [-2) 8.81735898612059E 08
[-28.) 2.9967147501897E-08 [-28.) 8.73082614295394E~08 [-25.] 3.1910872220167E-08 [-20.) 3.7258070047764SE~08
[-30.] 1.33102541726376E-08 [-%.] 3.879315911209E-08 [-2.] 1.36680706235601E-08 [-3.] 22862281731246E-08
[-32.] 6.23544101840595E-09 [-32] 165051589545 186E-08 [-».] 5.71363398132521E-09 [-3] 9205719359556 E-09
[-34) 2.59102861034391E-09 (-] 7.2646554983801E-09 [-31] 2.4189626667026TE~09 [-35.) 423949044631121E-09
[-3.] 1.06204368815286E-09 [-36.] 3.282537460552E-09 (-] 1.06906445228598E-09 [-37.] 1.83545596855464E-09
[-38.] 4.92798583145904E~10 [-3.] 145787677769529E~09 [-38.) 4.27503611670812E-10 [-3.) 8.29846598283953E-10
[-40.) 2752504267413E-10 [-40.] 6.05895136862915E-10 [~37.] 1.70300%02656891E~10 [-41] 38151736531271E-10
[-42.] 1.17068642017471E-10 (-] 2.60447535090221E-10 [-3.] 7.082925225 97 E-1 [-43] 1,64794440986282E-10
[-44.] 4.86893729326096E-11 [-44] 1.05336314354659E-10 [-41] 2 80501348884246E-11 [-45.) 6.6385587723691E-11
[-46.] 220113518658515E-11 [-46.] 5.01161537765618E-11 (-] 1.15675356919401E-11 [-47.) 265162118034473E-11
[-48.] 8.74280749357008E-12 [-48.]) 2.12657189206497E-11 [-45.) 4.80431200062415E-12 [-43.] 1965414768886 18E~11
[-50.) 3.38856245933815E-12 [-50.] 821340673038858E-12 [~.] 1E7944320202069E-12 [-51] 4.89065340657389E 12
[-52.) 1.25620313902235E-12 [-52.] 3.0349086408604E - 12 [~49.] 9.41215217639529E~13 [-53] 2.16781767525248E-12
[-54.) 4.84293247797071E-13 [-54.] 1215898472637E-12 [-51.) 5.230507 12763408613 [-55.) 9.25465018032523E-13




Single Object Tracking Agent with Comprehensive Action Set

* Reason?
* SAC is sampling action values from standard Gaussian distribution N(0,/)

* Problem?
Are our motion parameters, i.e. actions, iid? _ _ , _
P Asy, As,, 0, Ax, Ay

Data analysis? No, they are NOT iid!

Solution:
1- Compute the parameters using uniqueness of G_t
2- Assume MultiVariate Gaussian Distribution on data population
3- Learn this prior (MGD) from video frames
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Figure 1: The general idea of our tracking method contains an encoder to place the variables into
an appropriate multivariate Gaussian space where ¢ is the preprocessor to crop the video frames
appropriately. This paper focuses on developing and training the encoder with the bottleneck .
Once we have learned the action space, i.e. latent space, we use these multivariational inferences
to form the MDP states and estimate the tracking parameters based on them.



B-MuliVariational AutoEncoder
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Figure 2: Overview of our proposed method, in which video frames are encoded into a sample
set of the posterior, while the decoder is expected to estimate the object binary mask using the
multivariational inferences.

Lavae = —Eq,(2/0) [logpe(z]2)| + 8Dk 1 (g4 (z|x)|[p(2))

Lamvag = Leons (T, gt) + BLK L

ﬁa:.'mu; (j gf) — ﬁc:ﬂ(f:e gf) + ‘CJ (j gf)



B-MuliVariational AutoEncoder: Bottleneck
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B-MuliVariational AutoEncoder: Rep. trick

Table 1: Lower Bound (LB) and Upper Bound (UB) of the latent distributions. These numbers
are rounded floating points.

variables N(u, o) LB(u — o) UB(p + o)
U N (1.06,0.52) 0.55 1.59
Vg N (1.06,0.54) 0.53 1.61
U3 N(0,0.43) —0.43 0.43
Uy N(0.07,0.34) —0.27 0.41

vs N(0.08,0.74) —0.66 0.82




B-MuliVariational AutoEncoder: Rep. trick

Figure 2.7: The reparameterization trick linearly maps the data distribution ¢ to
the target distribution p by considering two margins i — o and p/ — o’ for the
data population.



B-MuliVariational AutoEncoder: Rep. trick

L L L Fa L Fi L
f

lower and upper bounds of each distribution. The coeflicients are calculated as a; = —* and

T

bi = p; — p; x Z for the ¢*" part of the bottleneck, therefore:

zi = a;e; + b; (f})

where z; is forming the i-th part of our latent set of samples z. Given a sample from the prior
e~ N(u,X) of size B x 50, we first divide it into five parts of 10 neurons. Then, for part ¢,
the transformation in Equation 6 is applied to force the random samples to have the encoder’s
posterior characteristics.



B-MuliVariational UNet




Results

Met hod Data Diaran NLL MSE

AMVAE training set 0.10 4.21 0.71

validation set 0.05 h.32 0.64

test set (.06 - (.65

AMV Unet training set 1.05 x e 1.98 (.30
validation set 1.22 x e " 2.71 0.30

test set 0.47 x e~ - (.24

Mahalanobis distance, which computes the probability distribution distances, is used as a metric
to compute the closeness of the prior and the posterior as follows:

=) K (= ) @

‘D."lfuh = “E _ r{‘{’j X Il:



Results

Table 4: Object segmentation performance on the DAVIS16 dataset [51] in terms of region
similarity 7 and contour similarity 7. The ResNet18T is the ResNet18 architecture plus the
one extra convolutional layer and OF is Optical Flow.

Methods Backbone QF T &F TJT FT
SegFlow [31] ResNet101 v 67 67.4 66.7
SAGE [32] - v 40.4 42.6 an.3
SMVAE ResNet 18 e 25.3 an.4 18.3
AMVUnet ResNet 187 % 41.6 40.4 42.9




Results: BMVUNet




Results
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Figure 11: The loss curves in the training phase of SMVAE. Left to right: total loss, construction
loss, and KL divergence loss.
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Figure 12: The loss curves in the training phase of SMVUnet. Left to right: total loss, construc-
tion loss, and KL divergence loss.



Results: Validation phase
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Conclusion

* We proposed an asymmetric idea to model a single object’s motion across video frames.

* We formulated BMVAE to learn this distribution plus the segmentation mask of the moving
object.

* We demonstrated that our proposed method properly learns the KL divergence of the
estimated posterior and the prior.

* The decoder of BMVAE estimates the binary mask of the object in the input frame.

* The latent variables in our setting correspond to a set of tracking parameters derived from
our scenario of motion modelling in the video frames.

* The variables are dependent on each other and describe the single object’s motion. Their
relation is formulated as a multi-variate Gaussian distribution by a mean vector and a
covariance matrix.
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