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Introduction

• A new motion modelling for objects in video
sequences is proposed, where the fundamental
parameters are dependent on each other with a
covariance matrix.

• β-Multivariational Autoencoder (βMVAE) is
developed to learn an MGD prior from video
frames for use as part of a single object-tracking
in the form of a decision-making process.

• By using U-Net instead AE neural network, both
posterior estimation and segmentation of the
network have been improved.

Figure 1: Overview of the entangled representation ap-
plication in the future tracking system.

Preliminaries

Figure 2: Overview of our proposed method.
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LβMVAE = Lcons(x̂, gt) + βLKL (2)

Lcons(x̂, gt) = Lce(x̂, gt) + LJ (x̂, gt) (3)

Proposed Method

Object Motion Modeling

Figure 3: Motion modelling in two successive frames.
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Bottleneck structure and distribution

Figure 4: The posterior parameters, µ ′ and Σ ′, com-
puted by two FC layers following the encoder’s output.

Reparameterization trick
Using the diagonal elements of Σ ′, the variable’s vari-
ances σ ′

is are computed in this step. Then, we obtain
the coefficients of the linear transformation to map the
prior samples p to the encoder’s posterior q using the
lower and upper bounds of each distribution. The coef-
ficients are calculated as ai =

σ ′
i

σi
and bi = µ ′

i−µi× σ ′
i

σi

for the ith part of the bottleneck, therefore:

zi = aiεi + bi (6)
where zi is forming the i-th part of our latent set of
samples z.

Table 1: Lower Bound (LB) and Upper Bound (UB) of
the latent distributions.

variables N (µ, σ) LB(µ− σ) UB(µ+ σ)

v1 N (1.06, 0.52) 0.55 1.59

v2 N (1.06, 0.54) 0.53 1.61

v3 N (0, 0.43) −0.43 0.43

v4 N (0.07, 0.34) −0.27 0.41

v5 N (0.08, 0.74) −0.66 0.82

Result and discussions

Posterior and log-likelihood evaluation

DMah = (µ− µ ′) × (
Σ+ Σ ′

2
)−1 × (µ− µ ′) (7)

Method Data DMah NLL MSE

βMVAE training 0.10 4.21 0.71

validation 0.05 5.32 0.64

test set 0.06 - 0.65

βMVUnet training 1.05 × e−6 1.98 0.30

validation 1.22 × e−6 2.71 0.30

test set 0.47 × e−6 - 0.24

Video object segmentation

Figure 5: Binary masks generated for several frames
of DAVIS16 set. a) input frame, b) annotation, c)
βMVAE result, d)βMVUnet output.

Saliency detection

Figure 6: The visualized probabilistic maps as saliency
maps for SED2 and ECSSD datasets. a)Input Image,
b)Annotation, c)βMVAE map, d)β MVUnet map.

Summary and conclusions
1 We formulate a novel dynamic to model the

single object’s motion across video frames.
2 The βMVAE is developed to learn a multivariate

Gaussian distribution with a full covariance
matrix from raw pixels in addition to the object
mask of the frame patches.

3 A novel trick is introduced for the bottleneck
reparameterization to map a set of the prior
samples to the posterior parameters to add the
randomness in the proposed structure.

4 The bottleneck is directly trained by computing
KullbackLeibler (KL) divergence between the
prior and the estimated posterior instead of
learning the expectation of the lower bound.

5 The outcomes of posterior estimation and
segmentation mask creation are enhanced by the
U-Net architecture.
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