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Video object segmentation
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e A new motion modelling for objects in video 0 0 I
sequences is proposed, where the fundamental
parameters are dependent on each other with a Bottleneck structure and distribution

covariance matrix.

e (3-Multivariational Autoencoder (3MVAE) is

developed to learn an MGD prior from video
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Figure 5: Binary masks generated for several frames
of DAVIS16 set. a) input frame, b) annotation, c)
BMVAE result, d)3MVUnet output.

frames for use as part of a single object-tracking i
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in the form of a decision-making process.
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e ore Figure 4: The posterior parameters, i’ and X', com-

puted by two FC layers following the encoder’s output.
Figure 1: Overview of the entangled representation ap-

plication in the future tracking system.

Reparameterization trick

Using the diagonal elements of X', the variable's vari-
Preliminaries ances 0/s are computed in this step. Then, we obtain

the coefficients of the linear transformation to map the

Bottleneck prior samples p to the encoder’s posterior g using the
""""""" ) lower and upper bounds of each distribution. The coef- Figure 6: The visualized probabilistic maps as saliency
Encoder . ' Decoder ficients are calculated as a; = g{ and b; = W/ — i ¥ g{ maps for SED2 and ECSSD datasets. a)lnput Image,
T g \ | z’ for the it" part of the bottleneck, therefore: b)Annotation, c)3MVAE map, d){3 MVUnet map.
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: where z; is forming the i-th part of our latent set of Summarv and conclusions
R e - samples z.
Figure 2: Overview of our proposed method. D) W3 eI £185 &) WO @ FRETlS 0 [Woue) fio:
Table 1: Lower Bound (LB) and Upper Bound (UB) of single object’s motion across video frames.
the latent distributions. ® The BMVAE is developed to learn a multivariate
Gaussian distribution with a full covariance
Lpvae = _]E%(Z\X)[logpe(x|z)]+BDKL<qd>(Z|X)||P(Z)) variables N(n, o) LB(p—o0) UB(u+ o) matrix from raw pixels in addition to the object
(1) ” N (1.06,0.52) 0.55 159 mask of the frame patches.
.06, 0. : :
R vl N(1.06,0.54) 0.53 161 ® A novel trick is introduced for the bottleneck
Lemvae = Leons(X, gt) + BLke (2) 0 . ‘ reparameterization to map a set of the prior
V3 N(0,0.43) —0.43 0.43 .
samples to the posterior parameters to add the
Leons(X, gt) = Lee(R,gt) + L7(R,gt)  (3) V4 N(0.07,0.34)  —0.27 0.41 randomness in the proposed structure.
V5 N(0.08,0.74)  —0.66 0.82 © The bottleneck is directly trained by computing
KullbackLeibler (KL) divergence between the
PI’ODOSEd Method ] ] prior and the estimated posterior instead of
Result and discussions learning the expectation of the lower bound.
Object Motion Modeling ® The outcomes of posterior estimation and

segmentation mask creation are enhanced by the

Posterior and log-likelihood evaluation |
U-Net architecture.
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_ _ _ _ _ _ AMVAE training 0.10 4.21 0.71
Figure 3: Motion modelling in two successive frames. e 0.05 539 0.64
test set 0.06 - 0.65
BMVUnet training 1.05 x e® 1.98 0.30
T T e 6
Il validation | 1.22 x e 2.71 0.30
X 1l =G¢ X |x,uy, 1 4
[ L ] l )Lk ] ( ) test set 0.47 x e~® - 0.24

where Gy is:
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