β-Multivariational Autoencoder for Entangled **Representation Learning in Video Frames**

Fatemeh Nourilenjan Nokabadi¹, Setareh Rezaee Oshternian²

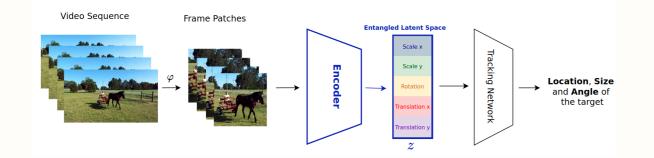
¹LVSN-REPARTI, Université Laval, Québec, Canada

²University Medical Center Groningen, University of Groningen, The Netherlands

Introduction

UNIVERSITÉ

- A new motion modelling for objects in video sequences is proposed, where the fundamental parameters are dependent on each other with a covariance matrix.
- β -Multivariational Autoencoder (β MVAE) is developed to learn an MGD prior from video frames for use as part of a single object-tracking in the form of a decision-making process.
- By using U-Net instead AE neural network, both posterior estimation and segmentation of the network have been improved.



$$G_{t} = \begin{bmatrix} \Delta s_{x} \times \cos\theta & -\Delta s_{y} \times \sin\theta & \Delta x \\ \Delta s_{x} \times \sin\theta & \Delta s_{y} \times \cos\theta & \Delta y \\ 0 & 0 & 1 \end{bmatrix}$$
(5)

Bottleneck structure and distribution

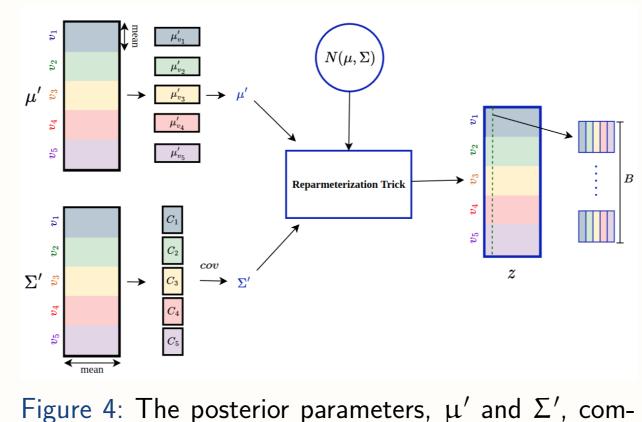


Figure 5: Binary masks generated for several frames of DAVIS16 set. a) input frame, b) annotation, c) β MVAE result, d) β MVUnet output.

Saliency detection

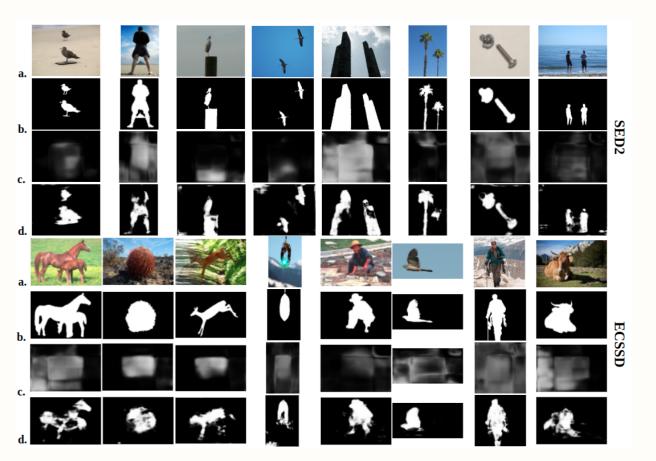


Figure 1: Overview of the entangled representation application in the future tracking system.

Preliminaries

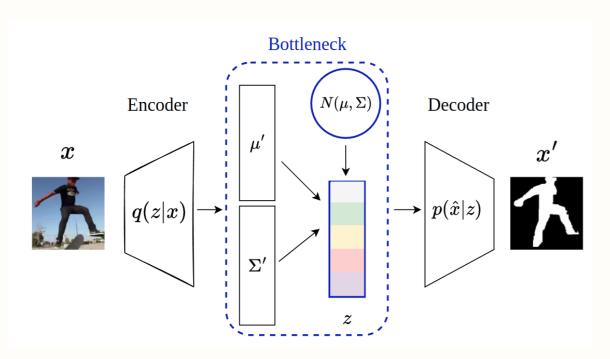


Figure 2: Overview of our proposed method.

$$\mathcal{L}_{\beta \mathsf{VAE}} = -\mathbb{E}_{q_{\phi}(z|x)} [\log p_{\theta}(x|z)] + \beta \mathsf{D}_{\mathsf{KL}} (q_{\phi}(z|x)) || p(z))$$
(1)
$$\mathcal{L}_{\beta \mathsf{M}\mathsf{VAE}} = \mathcal{L}_{\operatorname{cons}}(\hat{x}, \mathsf{gt}) + \beta \mathcal{L}_{\mathsf{KL}}$$
(2)
$$\mathcal{L}_{\operatorname{cons}}(\hat{x}, \mathsf{gt}) = \mathcal{L}_{\operatorname{ce}}(\hat{x}, \mathsf{gt}) + \mathcal{L}_{\mathcal{J}}(\hat{x}, \mathsf{gt})$$
(3)

Proposed Method

puted by two FC layers following the encoder's output.

Reparameterization trick

Using the diagonal elements of Σ' , the variable's variances σ'_i 's are computed in this step. Then, we obtain the coefficients of the linear transformation to map the prior samples p to the encoder's posterior q using the lower and upper bounds of each distribution. The coefficients are calculated as $a_i = \frac{\sigma'_i}{\sigma_i}$ and $b_i = \mu'_i - \mu_i \times \frac{\sigma'_i}{\sigma_i}$ for the ith part of the bottleneck, therefore:

$$z_i = a_i \varepsilon_i + b_i \tag{6}$$

where z_i is forming the i-th part of our latent set of samples z.

Table 1: Lower Bound (LB) and Upper Bound (UB) of the latent distributions.

variables	$\mathcal{N}(\mu,\sigma)$	$LB(\mu-\sigma)$	$UB(\mu+\sigma)$
v_1	$\mathcal{N}(1.06, 0.52)$	0.55	1.59
v_2	$\mathcal{N}(1.06, 0.54)$	0.53	1.61
v_3	$\mathcal{N}(0, 0.43)$	-0.43	0.43
v_4	$\mathcal{N}(0.07, 0.34)$	-0.27	0.41
v_5	$\mathcal{N}(0.08, 0.74)$	-0.66	0.82

Figure 6: The visualized probabilistic maps as saliency maps for SED2 and ECSSD datasets. a)Input Image, b)Annotation, c) β MVAE map, d) β MVUnet map.

Summary and conclusions

- We formulate a novel dynamic to model the single object's motion across video frames.
- **2** The β MVAE is developed to learn a multivariate Gaussian distribution with a full covariance matrix from raw pixels in addition to the object mask of the frame patches.
- **3** A novel trick is introduced for the bottleneck reparameterization to map a set of the prior samples to the posterior parameters to add the randomness in the proposed structure.
- **4** The bottleneck is directly trained by computing KullbackLeibler (KL) divergence between the prior and the estimated posterior instead of

Result and discussions

Object Motion Modeling

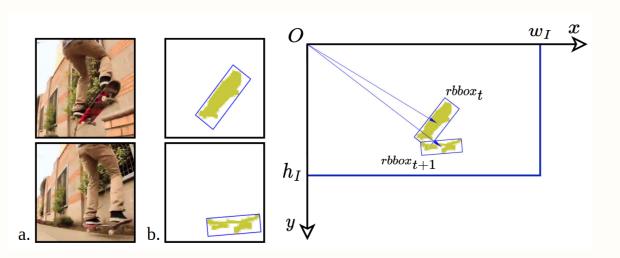


Figure 3: Motion modelling in two successive frames.

$$\begin{bmatrix} x', y', 1 \end{bmatrix}^{\mathsf{T}} = \mathsf{G}_{\mathsf{t}} \times \begin{bmatrix} x, y, 1 \end{bmatrix}^{\mathsf{T}}$$
(4)

where G_t is:

Posterior and log-likelihood evaluation

$$\mathcal{D}_{Mah} = (\mu - \mu') \times (\frac{\Sigma + \Sigma'}{2})^{-1} \times (\mu - \mu') \quad (7)$$

	Method	Data	\mathcal{D}_{Mah}	NLL	MSE
_	βΜVΑΕ	training	0.10	4.21	0.71
		validation	0.05	5.32	0.64
		test set	0.06	-	0.65
_	β MVUnet	training	$1.05 \times e^{-6}$	1.98	0.30
		validation	$1.22 \times e^{-6}$	2.71	0.30
		test set	$0.47 \times e^{-6}$	-	0.24

learning the expectation of the lower bound.

5 The outcomes of posterior estimation and segmentation mask creation are enhanced by the U-Net architecture.

Article Info

WiML Symposium @ ICML 2024, July 2024, Vienna, Austria